HVAC FORMULAS

TON OF REFRIGERATION - The amount of heat required to melt a ton (2000 lbs.) of ice at $32^{\circ} \mathrm{F}$

288,000 BTU/24 hr. $12,000 \mathrm{BTU} / \mathrm{hr}$.

APPROXIMATELY 2 inches in Hg. (mercury) = 1 psi
WORK $=$ Force (energy exerted) X Distance
Example: A 150 lb. man climbs a flight of stairs 100 ft. high

$$
\begin{aligned}
& \text { Work }=150 \text { lb. X } 100 \mathrm{ft} . \\
& \text { Work }=15,000 \mathrm{ft.}-1 \mathrm{~b} .
\end{aligned}
$$

ONE HORSEPOWER $=33,000$ ft. -1 b . Of work in 1 minute
ONE HORSEPOWER $=746$ Watts
CONVERTING KW to BTU:
$1 \mathrm{KW}=3413 \mathrm{BTU}^{\prime} \mathrm{s}$
Example: A 20 KW heater (20 KW X $3413 \mathrm{BTU} / \mathrm{KW}=68,260 \mathrm{BTU} \mathrm{S}$

CONVERTING BTU to KW:
$3413 \mathrm{BTU}^{\prime} \mathrm{S}=1 \mathrm{KW}$
Example: A $100,000 \mathrm{BTU} / \mathrm{hr}$. oil or gas furnace $(100,000 \div 3413=29.3 \mathrm{KW})$

COULOMB $=6.24 \times 10^{18} \quad(1$ Coulomb $=1 \mathrm{Amp})$
$\mathrm{E}=$ voltage (emf)
$I=$ Amperage (current)
$\mathrm{R}=$ Resistance (load)
WATTS (POWER) $=$ volts x amps or $P=E x I$

$$
P(\text { in } K W)=\frac{E x I}{1,000}
$$

```
U FACTOR = reciprocal of R factor
        Example:
        \frac{1}{19}R=.05U
    = BTU's transferred / 1 Sq.Ft. / 1 o F / 1 Hour
```

VA (how the secondary of a transformer is rated) $=$ volts x amps Example: 24 V x. $41 \mathrm{~A}=10 \mathrm{VA}$

ONE FARAD CAPACITY $=1$ amp. stored under 1 volt of pressure
MFD (microfarad) $=\frac{1}{1,000,000}$ Farad
$\underline{\text { LRA (Locked rotor amps) }=\text { FLA (Full Load Amps) }}$
5

LRA $=F L A \times 5$

TXV (shown in equilibrium)
46.7 Bulb Pressure

Spring
$\begin{array}{lll}\text { Pressure } \quad 9.7 \quad 37 & \text { Evaporator Pressure }\end{array}$

Bulb Pressure $=$ opening force
Spring and Evaporator Pressures = closing forces

RPM of motor $=\frac{60 \mathrm{~Hz} x \text { 120 }}{\text { No. of Poles }}$

1800 RPM Motor - slippage makes it about 1750
3600 RPM Motor - slippage makes it about 3450

DRY AIR $=78.0 \%$ Nitrogen
21.0% Oxygen
1.0\% Other Gases

WET AIR $=$ Same as dry air plus water vapor

SPECIFIC DENSITY $=\frac{1}{\text { Specific Volume }}$

SPECIFIC DENSITY OF AIR $=\frac{1}{\overline{13.33}}=.075$ lbs./cu.ft.

STANDARD AIR $=.24$ Specific Heat (BTU's needed to raise 1 lb. 1 degree)

SENSIBLE HEAT FORMULA (Furnaces):

BTU/hr. - Specific Heat X Specific Density X 60 min./hr. = $X \quad C F M X \Delta T$
.24 X .075 X 60 X CFM X $\Delta \mathrm{T}=1.08 \mathrm{X} \mathrm{CFM} \mathrm{X} \Delta \mathrm{T}$
ENTHALPHY $=$ Sensible heat and Latent heat

TOTAL HEAT FORMULA

(for cooling, humidifying or dehumidifying)
$\mathrm{BTU} / \mathrm{hr}$. = Specific Density X 60 min./hr. X CFM X $\Delta \mathrm{H}$ $=0.75 \times 60 \times C F M \times \Delta H$
$=\underline{4.5 \times \text { CFM } \times \Delta H}$

RELATIVE HUMIDITY $=\overline{\text { Moisture air can hold }}$

SPECIFIC HUMIDITY = grains of moisture per dry air
7000 GRAINS in 1 lb. of water

DEW POINT $=$ when wet bulb equals dry bulb

TOTAL PRESSURE (Ductwork) = Static Pressure plus Velocity Pressure
$\mathbf{C F M}=$ Area (sq. ft.) X Velocity (ft. min.)
HOW TO CALCULATE AREA

Rectangular Duct

$$
A=\underline{L \times W} \quad A=\frac{\pi D^{2}}{4} O R \underline{\pi r^{2}}
$$

Round Duct

RETURN AIR GRILLES - Net free area $=$ about 75\%

3 PHASE VOLTAGE UNBALANCE =

$$
\frac{100 \mathrm{x} \text { maximum deg. from average volts }}{\text { Average Volts }}
$$

NET OIL PRESSURE $=$ Gross Oil Pressure - Suction Pressure

COMPRESSION RATIO $=\frac{\text { Discharge Pressure Absolute }}{\text { Suction Pressure Absolute }}$
HEAT PUMP AUXILIARY HEAT - sized at 100\% of load

ARI HEAT PUMP RATING POINTS (SEER Ratings) $47^{\circ} 17^{\circ}$ NON-BLEND REFRIGERANTS:

Constant Pressure $=$ Constant Temperature during Saturated Condition

BLENDS - Rising Temperature during Saturated Condition
28 INCHES OF WC = 1 psi
NATURAL GAS COMBUSTION:
Excess Air $=50 \%$
15 ft. ${ }^{3}$ of air to burn $1 \mathrm{ft} .^{3}$ of methane produces:
$16 \mathrm{ft} \mathrm{H}^{3}$ of flue gases:
1 ft. ${ }^{3}$ of oxygen
12 ft. ${ }^{3}$ of nitrogen
1 ft. ${ }^{3}$ of carbon dioxide
2 ft. ${ }^{3}$ of water vapor
Another $15 \mathrm{ft} .^{3}$ of air is added at the draft hood

GAS PIPING (Sizing - CF/hr.) $=\frac{\text { Input BTU's }}{\text { Heating Value }}$
Example: 80,000 Input $\mathrm{BTU}^{\prime} \mathrm{s}$
$\overline{1000}$ (Heating Value per CF of Natural Gas)
$=80 \mathrm{CF} / \mathrm{hr}$.
Example:

$$
\begin{aligned}
& \begin{aligned}
\text { Example: } & \\
2550 & \text { (Heating Value per CF of Propane) }
\end{aligned} \\
&=31 \mathrm{CF} / \mathrm{hr} . \\
& \text { FLAMMABILITY LIMITS } \frac{\text { Propane }}{2.4-9.5} \\
&
\end{aligned}
$$

COMBUSTION AIR NEEDED	Propane		Natural Gas	
(PC=Perfect Combustion)	$23.5 \mathrm{ft} .^{3}$	(PC)	$10 \mathrm{ft} .^{3}$	(PC)
(RC=Real Combustion)	$36 \mathrm{ft.}^{3}$	(RC)	$15 \mathrm{ft} .^{3}$	(RC)
ULTIMATE $\mathrm{CO}_{\mathbf{2}}$	13.7%		11.8%	

CALCULATING OIL NOZZLE SIZE (GPH):

$$
\frac{\text { BTU Input }}{140,000 \text { BTU's }^{\prime}}=\text { Nozzle Size (GPH) }
$$

OR
$\overline{\overline{140,000}}$ X Efficiency of Furnace

FURNACE EFFICIENCY:

$$
\% \text { Efficiency }=\frac{\text { energy output }}{\text { energy input }}
$$

ABSOLUTE TEMPERATURE MEASURED IN KELVINS

SINE = side opposite \quad COSINE $=$ side adjacent

$$
\begin{aligned}
& \text { TANGENT } \\
& \text { tan }
\end{aligned}=\frac{\text { side opposite }}{\text { side adjacent }}
$$

PERIMETER OF SQUARE:

$$
P=4 s
$$

P = Perimeter $\mathrm{s}=\mathrm{side}$

PERIMETER OF RECTANGLE: $\quad \mathrm{P}=21+2 \mathrm{w}$

PERIMETER OF TRIANGLE: $\quad \mathrm{P}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
P - Perimeter
| = length
$\mathrm{w}=\mathrm{width}$

P = Perimeter
a $=1$ st side
$\mathrm{b}=2 \mathrm{nd}$ side
c $=3 r d$ side

PERIMETER OF CIRCLE:

$$
C=\pi D
$$

C = Circumference
$C=2 \pi r$
$\pi=3.1416$
D = Diameter
$r=$ radius
AREA OF SQUARE:
$a=s^{2}$
A = Area
s = side

AREA OF RECTANGLE:

$$
A=1 \mathrm{w} \quad \begin{array}{ll}
\mathrm{A}=\text { Area } \\
\mid=\text { length } \\
\mathrm{w}=\text { width }
\end{array}
$$

AREA OF TRIANGLE:

$$
\begin{array}{ll}
\mathrm{A}=1 / 2 \mathrm{bh} & \mathrm{~A}=\text { Area } \\
\mathrm{b}=\text { base } \\
& \mathrm{h}=\text { height }
\end{array}
$$

AREA OF CIRCLE:

$$
\begin{aligned}
& A=\pi r^{2} \\
& \text { A = Area } \\
& \pi=3.1416 \\
& A=\frac{\pi}{4} D^{2} \\
& r=\text { radius } \\
& \text { D = Diameter }
\end{aligned}
$$

$$
\mathrm{V}=\mathrm{l} \text { wh } \quad \begin{aligned}
& \mathrm{V}=\text { Volume } \\
& \mathrm{V}
\end{aligned}=\text { length } \quad \mathrm{w}=\text { width } \quad \mathrm{h}=\text { height }
$$

VOLUME OF CYLINDRICAL SOLID:

$$
\begin{array}{ll}
\mathrm{V}=\pi r^{2} \mathrm{~h} & \mathrm{~V}=\text { Volume } \\
\mathrm{V}=\frac{\pi}{4} \mathrm{D}^{2} \mathrm{~h} & \begin{array}{l}
\pi \\
\mathrm{r}
\end{array}=3.1416 \\
& \mathrm{D}=\text { radius } \\
\mathrm{h} & =\text { heiameter }
\end{array}
$$

CAPACITANCE IN SERIES:

$C=\frac{1}{\overline{\frac{1}{C}_{1}+\frac{1}{C_{2}}}+}$

CAPACITANCE IN PARALLEL:

$$
\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots \quad . \quad . \quad .
$$

GAS LAWS:

Boyle's Law: $\quad P_{1} V_{1}=P_{2} V_{2} \quad P=$ Pressure (absolute)

$$
\mathrm{V}=\mathrm{Volume}
$$

Charles' Law: $\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \quad \mathrm{P}=$ Pressure (absolute) $\mathrm{T}=$ Temperature (absolute)

General
Gas Law: $P_{1} V_{1} \quad P_{2} V_{2} \quad P=$ Pressure (absolute)

$$
\overline{\overline{\mathrm{T}_{1}}} \quad=\frac{\mathrm{V}}{\overline{\mathrm{~T}_{2}}} \quad \begin{aligned}
& \mathrm{T}=\text { Volume } \\
& \mathrm{T}
\end{aligned}=\text { Temperature (absolute) }
$$

PYTHAGOREAN THEOREM:

$$
\begin{aligned}
& \mathrm{C}^{2}=\mathrm{a}^{2}+b^{2} \quad \mathrm{c}=\text { hypotenuse } \\
& \mathrm{a} \& \mathrm{~b}=\text { sides }
\end{aligned}
$$

